Heterogeneous Oxidation of SO\textsubscript{2} in Sulfate Production During Nitrate Photolysis at 300 nm: Effect of pH, Relative Humidity, Irradiation Intensity, and the Presence of Organic Compounds

Masao Gen1, Ruifeng Zhang, Dandan Huang2, Yong Jie Li3, Chak K. Chan1,*

1School of Energy and Environment, City University of Hong Kong, Hong Kong, China
2Shanghai Academy of Environmental Sciences, Shanghai, China
3Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China

*chak.k.chan@cityu.edu.hk

Importance of heterogeneous oxidation of SO\textsubscript{2} into sulfate
- Heterogeneous oxidation of SO\textsubscript{2} into sulfate as important sulfate production pathways
- Increasing role of nitrate in particulate matter in China
- In this paper, we propose a novel pathway for sulfate production during photolysis of particulate nitrate2,3

In-situ aerosol flow cell coupled with Raman spectrometer
- Particle sample: ammonium nitrate (AN)
- Irradiation: 300 nm LED
- Photon flux: \(1.5 \times 10^{11}\) photons cm-2 s-1
- SO\textsubscript{2} (g): 7.7 ppm
- RH: 80%
- Reaction time: up to 1 day

Proposed mechanism for heterogeneous oxidation of SO\textsubscript{2} into sulfate during nitrate photolysis
- In-particle oxidants produced from nitrate photolysis at \(>290\) nm irradiation: OH, NO\textsubscript{3}, and NO\textsubscript{2}; HNO\textsubscript{3}
- 4 pathways for oxidation of dissolved SO\textsubscript{2} by: (1) NO\textsubscript{3}, (2) OH, (3) NO\textsubscript{2}, HNO\textsubscript{3}, (N(III)), (4) H\textsubscript{2}O\textsubscript{2}
- Organics react with OH to produce O\textsubscript{3}/HO\textsubscript{2}
- Self reaction of O(3)/HO\textsubscript{2} for H\textsubscript{2}O\textsubscript{2} production

Evidence for sulfate production during nitrate photolysis
- (i) Dark experiment (AN + SO\textsubscript{2}) in air and (ii) AN photolysis without SO\textsubscript{2} (AN + UV in air): no sulfate production
- NaCl photolysis with SO\textsubscript{2} (NaCl + UV + SO\textsubscript{2} in air): significantly low sulfate production
- AN photolysis with SO\textsubscript{2} in air (AN + UV + SO\textsubscript{2} in air) and N\textsubscript{2} (AN + UV + SO\textsubscript{2} in N\textsubscript{2}): sulfate production
- AN photolysis with SO\textsubscript{2} and delay irradiation (AN + delay UV in air): significant sulfate production during irradiation

Effect of initial particle pH, RH, and irradiation intensity on reactive uptake coefficient of SO\textsubscript{2} for sulfate production, \(\gamma_{\text{SO}_2}\)
- Insensitive to initial particle pH: rapid pH drop during sulfate production
- Less sensitive to RH
- Strong correlation with irradiation intensity (photon flux)
- High sensitivity of \(\gamma_{\text{SO}_2}\) with nitrate photolysis rate, \(p_{\text{NO}_3}\) (M s-1):
 \[\gamma_{\text{SO}_2} \sim 1.64 + p_{\text{NO}_3}\]

Effect of organic compounds on sulfate production
- Higher sulfate production for SN + Gly in air than SN in air: contribution of H\textsubscript{2}O\textsubscript{2} to SN pathway and higher particle pH during reactions (3.5 for SN + Gly and 1.5 for SN)
- Comparable sulfate production of AN + Oxlac in air and N\textsubscript{2} with pure AN
- Lower sulfate production for AN + NaBC: no O\textsubscript{3}/HO\textsubscript{2} (i.e., H\textsubscript{2}O\textsubscript{2}) production

Kinetic modeling: atmospheric implications
- Dominance of N(III) pathway
- Contribution of H\textsubscript{2}O\textsubscript{2} pathway for SN + Gly
- Minor contributions of OH and NO\textsubscript{3} pathways

Evidence for sulfate production rates during nitrate photolysis
- Enhanced sulfate production rates during nitrate photolysis in the presence of chloride ions at [Cl\textsubscript{\text{-}}] [NO\textsubscript{3}\text{-}] \(\leq 0.2\)
- Enhanced sulfate production rates in the presence of Br\textsubscript{\text{-}} or I due to increased nitrate photolysis rate constant, \(k_{\text{NO}_3}\)

Summary
1. Significant sulfate production (\(p_{\text{NO}_3}\) of \(10^{-1}\)) during nitrate photolysis: \(\gamma_{\text{SO}_2} \approx 1.64 + p_{\text{NO}_3}\)
2. No inhibiting effect of the presence of organics on sulfate production during nitrate photolysis

Ongoing work
1. Halide-induced enhancement of nitrate photolysis
2. Effect of nitrate photolysis on formation of secondary organic aerosol

References:
3. Zhang et al., to be submitted.